

FC-Cubicの電極特性解析技術の紹介 -新型MIRAI触媒の評価事例-

2021.12.10 第6回 FC-Cubicオープンシンポジウム

技術研究組合 FC-Cubic 片山 翔太

近年の産業界の課題: 商用車用PEFCスタックの開発

PEFC普及拡大のための次の開発ターゲット ⇒ 商用車

MEA劣化による発電性能低下

触媒層の劣化現象

●触媒金属の劣化
 > 粗大化(溶解・再析出、凝集)
 > 脱落
 > 合金元素の溶出

触媒の活性の低下

●担体カーボンの劣化
 >担体空隙・アイオノマーの設計構造が崩れる
 >粒子間の接合性が悪化

酸素・プロトン・電子の

輸送特性が悪化

高耐久化の設計指針を得るには 各劣化現象の性能低下への影響度を知る必要

FC-CubicのMEA特性評価技術

4/28

atform

」実用材料の性能解析・設計指針 ・耐久性向上指針のための劣化解析

実用段階のトレンド材料 メソポーラスカーボン(MPC)担体

触媒性能向上の一端を担う カーボン担体

中空構造のカーボン

2020年新型MIRAIの触媒で採用

5/28

第14回日中省エネルギー・環境総合フォーラム トヨタ自動車株式会社

メソポーラスカーボン(MPC)担体の特徴 6/28 ~ 出力面でのメリットと懸念点~

- 高い触媒活性
 触媒表面へのアイオノマー吸着を抑制
- 高い酸素拡散性
 適切な細孔径の設計

V. Yarlagadda et al., ACS Energy Lett. 3, 618 (2018).

懸念点·課題

- 細孔内部へのプロトン輸送損失
 - アイオノマーによる伝導パスが無い
- 細孔内抵抗の評価法が確立されていない

メソポーラスカーボン(MPC)担体の特徴 7/28 ~ 耐久性のメリットと懸念点~

触媒金属の耐久性メリット

- 凝集による粗大化・脱落の抑制
- 粒子間距離が離れていることで 溶解再析出が進行しづらい

E. Padgett et al., J. Electrochem. Soc. 166, F198 (2019).

A. Kobayashi et al., ACS Appl. Energy Mater. 4, 2307 (2021).

担体劣化耐久性の懸念点

- 腐食が発生するカーボン表面の面積が大きい
- 空隙率が高く、触媒層構造が 変化し易い可能性?

コンテンツ

FC-Cubicの評価・解析技術の紹介

- 新型MIRAI触媒の発電性能解析
 - メソポーラスカーボン(MPC)担体の 設計コンセプトの有効性を確認
 - 担体細孔内の物質輸送特性
- 担体劣化による性能低下要因の解析
 - 中実担体MEAの劣化解析の事例
 - MPC担体の劣化解析に向けた着目点

新型MIRAI 触媒の発電性能評価

♦ サンプル情報

従来の市販合金触媒と比較して高い発電性能

⇒性能向上の要因を解析

9/28

orm

新型MIRAI触媒のORR活性評価

FCCJ評価プロトコル準拠, 80°C, RH100%, P=150 kPa, H₂/O₂

新型MIRAI触媒は市販合金触媒よりも 電気化学有効表面積(ECSA)と面積比活性が高い

FC•Platform

電気化学有効表面積の向上の要因 11/28

透過型電子顕微鏡観察による触媒粒径評価

面積比活性の向上の要因

12/28

orm

電気化学評価手法により触媒分布とアニオン吸着率を評価

担体細孔内への触媒担持による アイオノマー被毒抑制効果を実際に確認

触媒層内の酸素拡散性

MEAの酸素拡散抵抗を部位ごとの寄与に解析

新型MIRAI触媒の触媒近傍の酸素拡散性は 中実担体触媒に劣らない

触媒層内のプロトン伝導抵抗

14/28

細孔内部の抵抗を解析するための新たな手法を開発中

低加湿条件では細孔内プロトン抵抗の寄与が大きい ⇒ 高温低加湿運転時には課題となる可能性

ここまでのまとめ

● 新型MIRAI触媒の発電性能解析

性能解析技術の NEDO事業内での活用

コンテンツ

FC-Cubicの評価・解析技術の紹介

- 新型MIRAI触媒の発電性能解析
 - メソポーラスカーボン(MPC)担体の 設計コンセプトの有効性の確認
 - 担体細孔内の物質輸送特性
- 担体劣化による性能低下要因の解析
 - 中実担体MEAの劣化解析の事例
 - MPC担体の劣化解析に向けた着目点

カーボン担体劣化耐久性の評価

- > サイクル前後の触媒層特性 評価
- ▶ 排気ガス分析によるカーボン 腐食量の評価(CO₂濃度)

評価サンプル

	PtCo/AB MEA
カソード 触媒	TEC36F52
担体	アセチレンブラック担体
Pt担持量	0.20 mg _{Pt} /cm ²
lonomer	Nafion® D2020 (Chemours)
I/C	1.2
電解質膜	GORE SELECT 12 µm (GORE)
ガス 拡散層	SIGRACET 28BC (SGL)
アノード 触媒	TEC10EA50E(田中貴金属)

加速劣化試験による発電性能低下

劣化後には幅広い電流密度域で出力が低下

▶ 性能低下要因を解析

活性の低下

80°C, 100%RH, 150 kPa, *p*_{O2}=100 kPa

FC•Platform

カーボン酸化による触媒層内の輸送特性の悪化 を定量的に評価

面積比活性低下の考察

22/28

FC•Platform

<u>触媒劣化の影響</u>:合金組成をXRD測定により推定

担体劣化の影響

- 劣化生成物による被毒:アニオン吸着率増大傾向あり
 - 担体-金属間の相互作用の変化(未解明)

ECSA低下の考察

23/28

FC•Platform

担体劣化による触媒脱落の可能性

24/28加速劣化試験によるカーボン酸化量

<u>劣化サイクル中のCO2排出量を測定しカーボン酸化速度に換算</u>

14%

FC•Platform

合計カーボン酸化量 (担持量に対する割合)

物質輸送特性悪化の考察

25/28

FC•Platform

■触媒層構造の変化

カーボン骨格構造の変化を伴う ・空隙率減少、屈曲度増大など

中実担体劣化の評価結果のまとめ

MPC担体劣化解析の着目点

まとめ

FC•Platform

<u>FC-Cubicの電気化学評価/構造評価技術を</u> 評価事例を通して紹介した

● 新型MIRAI触媒の性能解析

✓ MPC担体触媒の設計コンセプトの有効性を確認
 ✓ 担体細孔内プロトン輸送性が高温低加湿運転時の課題か

● 担体劣化現象の解析

✓ 担体劣化による性能低下を触媒層特性・構造変化から解釈
 ✓ MPC担体劣化解析のため細孔内輸送特性の定量が重要

現在の取り組み

性能解析技術を活用したMPC担体劣化メカニズムの解明