

メゾポーラスカーボン担体の 耐久性向上のための劣化要因解析

技術研究組合FC-Cubic 〇片山 翔太、朝岡 賢彦

2021/12/1 第62回電池討論会

メゾポーラスカーボン(MPC)担体 ーPEFCコスト低減のための注目材料ー

近年の触媒性能向上の一端を担う担体材料

(1) V. Yarlagadda et al., ACS Energy Lett. 3, 618 (2018).

● 触媒へのアイオノマー被毒の抑制により高活性
● 高い酸素拡散性を確保

多孔質担体触媒の耐久性(1)

中実カーボン担体触媒と比較して...

触媒金属劣化耐久性は高い傾向

<u>負荷変動に対する耐久性</u>

 多孔質担体では金属粒子の 凝集による粗大化が抑制

(2) E. Padgett *et al., J. Electrochem. Soc.* **166**, F198 (2019).

(3) A. Kobayashi *et al., ACS Appl. Energy Mater.* **4**, 2307 (2021).

多孔質担体触媒の耐久性(2)

中実カーボン担体触媒と比較して...

担体カーボン腐食による劣化耐久性に懸念

カーボン腐食速度が大きい

・カーボン比表面積が大きい
⇒ 反応面積が大きい

(5) P. T. Yu et al., ECS Trans. 3(1), 797 (2006).

Time at 1.2V. 95C [hrs]

カーボン腐食が性能低下に 与える影響度の違い

- 空隙率が高く構造が変化し易い?
- 細孔内部の物質輸送特性の変化?

● 評価対象MPC担体の構造の紹介

- MEAの担体劣化耐久性の評価
 - ・加速劣化試験による発電性能低下
 - ・触媒活性・物質輸送特性の変化
 - ・触媒・触媒層構造の変化
 - カーボン酸化速度の評価

触媒層作成時の細孔内部への アイオノマーの侵入はわずか

....

FC•Platform

MPC担体の黒鉛化度

ロラマンスペクトルによる評価

1580 cm⁻¹ピーク半値幅 100 80 黒鉛化度 60 40 20 0 局 市販 黒鉛化 PtCo/AB VULCAN **PtCo VULCAN** /MPC

FC•Platform

MPC担体触媒の活性

■ 従来の中実担体触媒と比較

	MPC担体MEA	中実担体MEA	
カソード 触媒	PtCo/MPC触媒	<mark>PtCo/AB</mark> (TEC36F52, 田中貴金属)	-
担体	MPC担体	アセチレンブラック担体	
Pt担持量	0.19 mg _{Pt} /cm ²	0.20 mg _{Pt} /cm ²	<u>ַ</u>
			-

● 評価対象MPC担体の構造の紹介

- MEAの担体劣化耐久性の評価
 - ・加速劣化試験による発電性能低下
 - ・触媒活性・物質輸送特性の変化
 - ・触媒・触媒層構造の変化
 - カーボン酸化速度の評価

カーボン酸化耐久性の評価

評価サンプル

	PtCo/MPC	PtCo/AB	
カソード 触媒	PtCo/MPC 触媒	TEC36F52	
担体	MPC担体	アセチレン ブラック担体	
Pt担持量	0.19 mg _{Pt} /cm ²	0.20 mg _{Pt} /cm ²	
lonomer	Nafion® D2020 (chemours)		
I/C	1.2	1.0	
電解質膜	GORE SELECT 12 µm (GORE)		
ガス 拡散層	SIGRACET 28BC (SGL)		
アノード 触媒	TEC10EA50E(田中貴金属)		

MEA発電性能劣化挙動の比較

PtCo/MPC触媒層は比較的性能低下が早い

▶ 性能低下要因の違いを解析

FC•Platform

FC•Platform

活性低下の比較

MPC担体の活性低下要因として ECSA低下よりも面積比活性の低下が顕著

触媒層内の拡散抵抗

PtCo/MPC触媒層の方が プロトン・酸素輸送特性の劣化が早い

FC•Platform

● 評価対象MPC担体の構造の紹介

- ・触媒・触媒層構造の変化
- ・カーボン酸化速度の評価

ECSA変化の要因:粒径変化

面積比活性低下の要因

◆ <u>合金組成</u> XRD面間隔評価からの推定

Co濃度の維持率 PtCo/MPC ~40% PtCo/AB ~70%

▶触媒金属の特徴?

◆ <u>その他の要因</u>(評価中)

- ・細孔内部の金属担持割合の変化
- ・アイオノマー被毒の影響度(CO置換電流)

カーボン腐食速度の定量

□ セル出ロガスの質量分析によりCO₂排出速度を測定

セル温度:80°C
湿度:120%RH
アノード:H ₂ , 1 L/min
カソード:N ₂ , 0.1 L/min
雷極面積 ·5 cm ²

電極面積 :5 cm² 触媒担持量:0.2 mg_{Pt} cm⁻²

<u>測定データの一例</u> 1.0 V – 1.5 Vの三角波(20 mV/s)

カーボン腐食速度の比較

1.0 V-1.5 V サイクル(20 mV/s)のカーボン腐食速度

PtCo/MPC触媒層は高比表面積に由来して カーボン腐食速度が大きい

触媒層厚さの変化

 触媒層のかさ体積減少(厚さ)
排出CO₂から見積もられた
カーボン酸化重量割合
40%
カーボン骨格構造の 変化を伴う (空隙率低下)

MPC劣化要因の解釈/今後の追究点

MPC劣化要因の解釈/今後の追究点

謝辞

本研究は新エネルギー・産業技術総合開発機構(NEDO)の支援を受けて実施された。関係各位に感謝する。

Appendix

MPC担体の特徴:アイオノマー吸着量

14

atform

PtCo/MPC触媒層は中実担体触媒と比べてアイオノマー吸着が抑制

▶ 高酸素分圧(p₀₂=100kPa)のI-V特性からプロトン抵抗を抽出

触媒層酸素拡散抵抗の抽出

● 低酸素分圧(p₀₂=5 kPa)の限界電流から評価

MS検出強度とカーボン腐食速度の検量線

CO酸化反応の計測: 2%-CO flow(N₂ buff.), 0.1 L/min

高電位サイクル中のカーボン腐食速度

カーボン劣化への触媒の影響

N. Linse et al., Electrochimica Acta 56(2011)7541.

FC•Platform

25