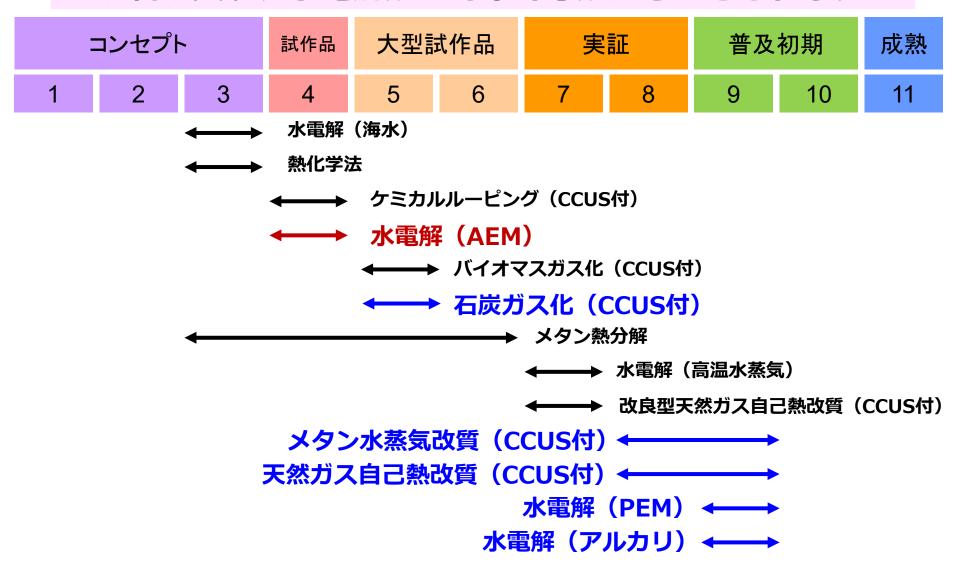
FC3 第8回 オープンシンポジウム

水電解 課題共有

AEM形水電解における課題

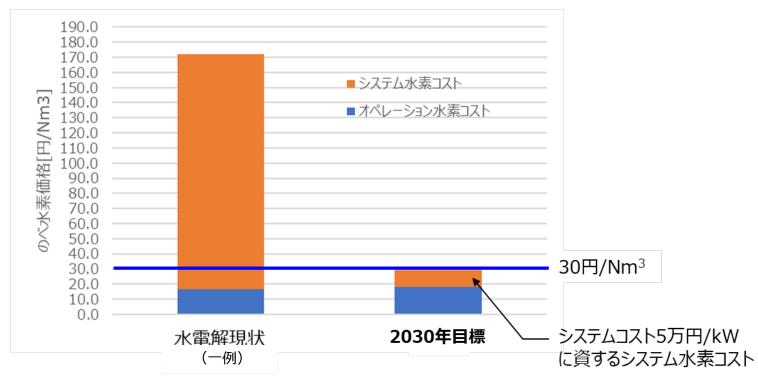

山梨大学 宮武健治

2021年 7月13日

水素製造技術の技術成熟度

2070年までの主たる水素製造手法は、CCUS付き化石 燃料改質や、水電解が量的な寄与が大きいとされる。

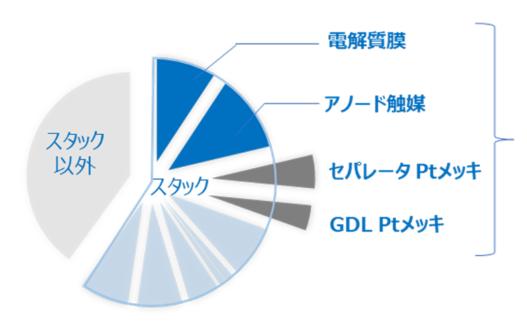
各種水電解デバイスの特徴


アニオン膜型水電解はコスト、性能、効率の観点から 高いポテンシャルを持つが、材料開発が鍵を握る

方式	アルカリ水型 (AE)		プロトン膜型 (PEM)		アニオン膜型 (AEM)		固体酸化物型 (SOE)	
高出力 •負荷変動	×	隔膜:リーク により低出力	0	高出力 高速起動	0	電解質膜:リークせず、高出力化 可 低温で高速起動 可	×	高温:起動時間 が長い
コスト*	0	8.5万円/kW	×	13.5万円/kW	0	≦10万円/kW	Δ	研究段階
効率 (LHV)	Δ	70%	0	75%	0	>80%	0	80%
電解質	×	隔膜リークで H ₂ 純度低下	0	高耐久		高耐久アニオン膜	Δ	研究段階
電極触媒	0	低コスト	×	高コスト (貴金属)		低コスト (非貴金属)	Δ	研究段階
その他	電解液が濃アルカリ で危険		高コストPtコートTiセ パレータ		AEM・低コスト触媒の開発プロ ジェクトが進行中		高温での材料劣化 廃熱利用が必須	

^{*):&}quot;Development of Water Electrolysis in the European Union" PEM, AEの2020年のトレンドデータより試算 AEMは触媒層、セパッレータ部材をAE相当

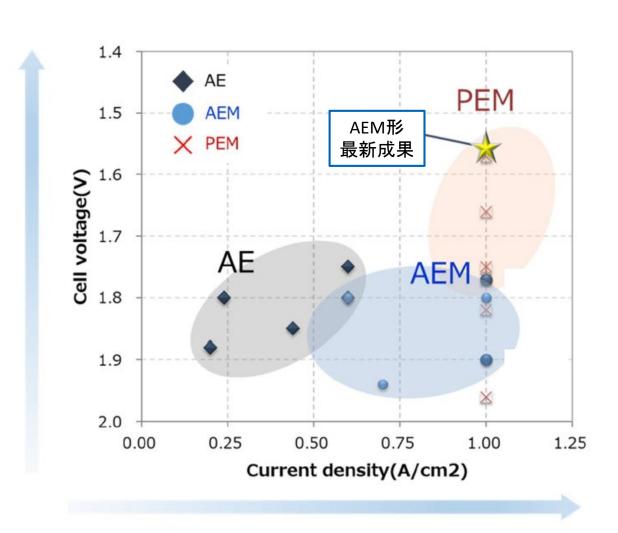
水素コスト目標と達成のための課題


水素コスト30円/Nm³に向けてシステムコスト5万円/kWは必達目標

	仮定値	根拠
電力コスト	4円/kWh	卸売電力を想定
システム効率	65% (単セル80%)	PEM同等 性能劣化▲10%/80000hr込み
システムコスト	5万円/kW	METI目標値
設備利用率	30%	洋上風力想定 ※NEDO 再生可能エネルギー技術白書

アニオン膜型水電解のコスト分析

コスト割合の高いアノード触媒、電解質膜の基盤材料開発、 およびアッセンブリー (プロセス) の基盤技術開発による低コスト化が最重要ポイント


本提案での低コスト化を見据えた 基盤技術開発取り組み

- •電解質膜技術
- ・非貴金属アノード触媒技術
- ・Ptメッキレス技術
- ・アッセンブリー技術

PEMシステムをベースとしたコスト割合

アニオン膜型水電解の現状性能

AEM型でPEM型トップレベル性能に匹敵する成果もあり

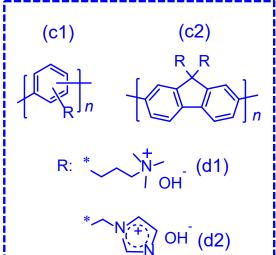
アニオン膜型水電解の技術課題例

分類	技術課題
	① アニオン導電性(水酸化物イオン導電率)の向上
	② 耐久性(アルカリ安定性、機械強度)向上
アニオン膜 ・イオノマー	③ 劣化機構の解明
127	④ 気体(不)透過性、水透過性の制御
	⑤ 薄膜形成能の向上、形成方法の改善
	⑥ OER活性、HER活性の向上
	⑦触媒機構の解明
電極触媒	⑧電子導電性の向上
	⑨ 耐久性(負荷変動、高電流密度)の向上
	⑩劣化機構の解明
	⑪電子導電性の向上
	⑪ AEM/触媒層の接触性の改善
触媒層	③ 多孔質輸送層(PTL)の最適化
	14 耐久性の向上
	⑤劣化機構の解明

アニオン膜開発における設計例

役割分担型三元共重合構造

(a1) (a2)
$$(CF_2)^{x} \longrightarrow_{m} \longrightarrow_{m} (CF_2)^{x}$$

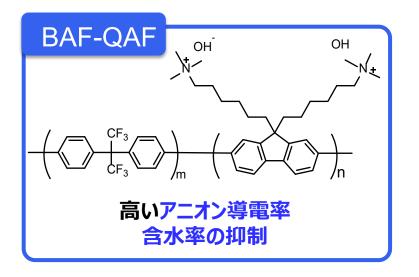

$$x=2, 3, 5, 6, 10 \quad CF_3$$
(a3)
$$(CF_3)_{m} \longrightarrow_{m} (CF_3)_{m}$$

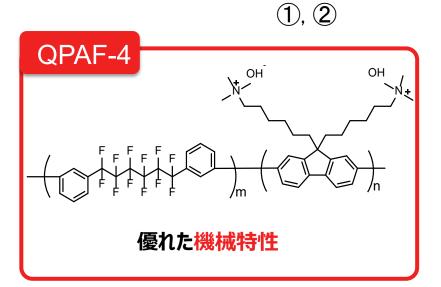
部分フッ素構造

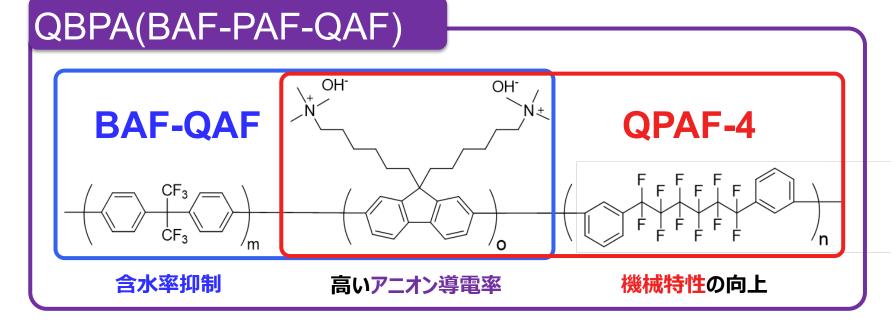
- □ 柔軟薄膜形成
- □ 溶媒親和性

イオノマー用構造

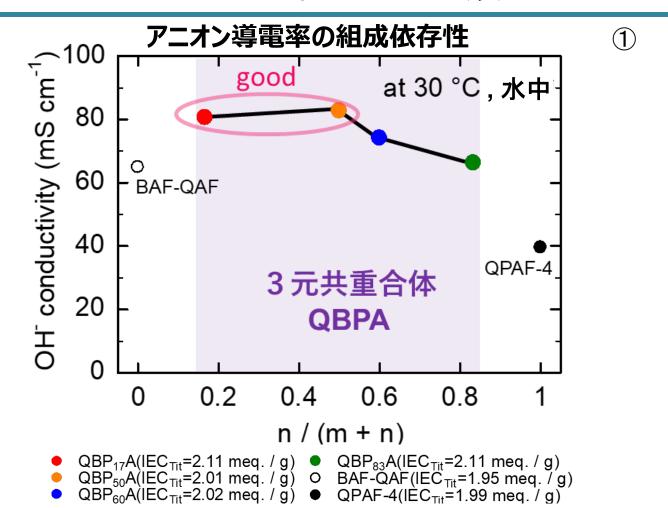
- □ 気体透過性
- □ 触媒親和性


イオン基構造

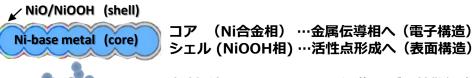

- □ 高アニオン導電性
- □ アルカリ安定性


ボトルネック課題と解決方法

- ・アニオン導電率:相分離構造制御によるイオン移動度向上
- ・アルカリ安定性:アンモニウム基の電子・立体構造最適化
- ・気体透過性、透過選択性の増大:嵩高い芳香族基導入による自由体積増大
- ・触媒との親和性:アンモニウム基および芳香族基の電子・立体構造最適化
- ・低級アルコールへの溶解性:フッ素基導入による極性分子との相互作用増大

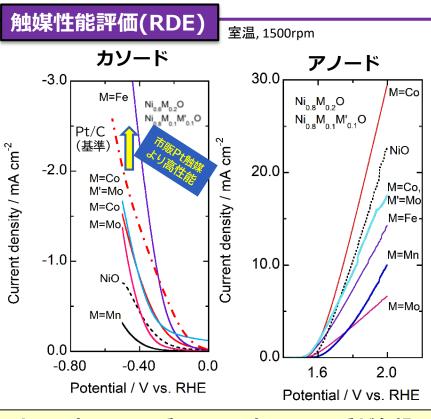

三元共重合アニオン膜

三元共重合アニオン膜

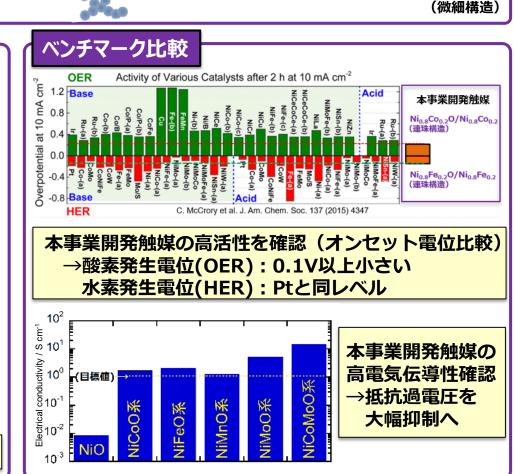

- 三元共重合体とすることにより、二元共重合体から予測される導電率 を大きく凌駕
- 最適な組成を見出すことに成功

非貴金属系触媒開発における設計例

触媒設計指針


6,8

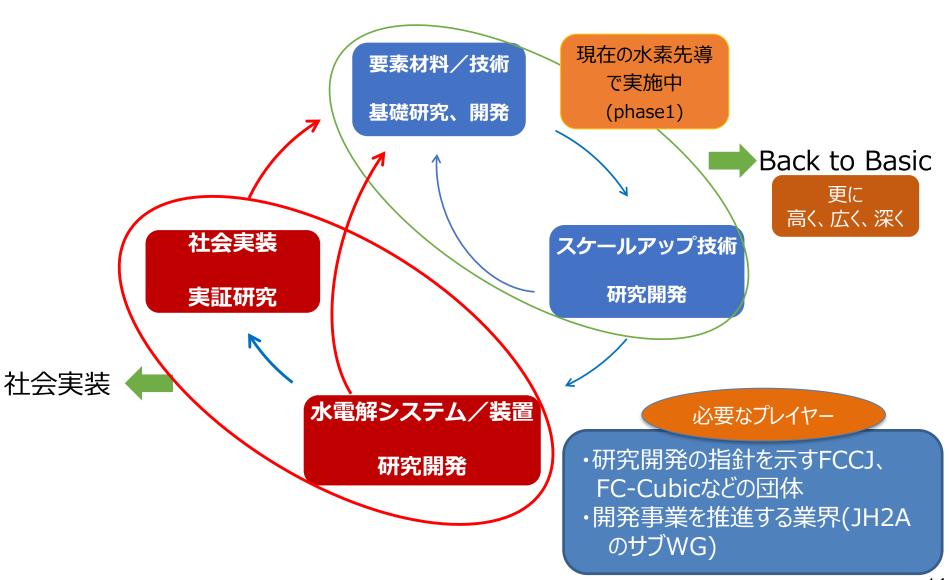
- 1)非貴金属触媒 (NPGM)
- 2)両極を検討 (アノード+カソード 検討)
- 3) 各構造を改良 (電子構造・表面構造・微細構造)
- 4) 量産性に配慮 (NEDOの過去事業にて開発済)



連珠構造

…電子伝導 & ガス拡散経路

カソード:NiFeO系、アノード:NiCoO系が有望


アニオン膜型水電解の技術課題例

分類	技術課題
	① アニオン導電性(水酸化物イオン導電率)の向上
	② 耐久性(アルカリ安定性、機械強度)向上
アニオン膜 ・イオノマー	③ 劣化機構の解明
4957	④ 気体(不)透過性、水透過性の制御
	⑤ 薄膜形成能の向上、形成方法の改善
	⑥ OER活性、HER活性の向上
	⑦触媒機構の解明
電極触媒	⑧電子導電性の向上
	⑨ 耐久性(負荷変動、高電流密度)の向上
	⑩劣化機構の解明
	①電子導電性の向上
	① AEM/触媒層の接触性の改善
触媒層	③ 多孔質輸送層(PTL)の最適化
	14 耐久性の向上
	⑤劣化機構の解明

アニオン膜型水電解の技術課題例

分類	技術課題
生産性	16 CCMの連続生産
	① 標準評価セル(単セル、スタック用)の設定
	18 性能評価プロトコルの設定
評価・解析	19 過電圧分離方法の確立
	⑩ 加速劣化プロトコルの設定
	② 劣化要因解析方法の確立

今後の研究プロジェクト・体制に関する課題

