11th FC-Cubic Open Symposium Poster Session

発表No.1

Evaluation of Catalytic Activity of Fuel Cell Catalysts by Rotating Disk Electrode (RDE) Inas Hafez, PhD

Research Background

Rotating Disk Electrode (RDE) is a NEDO technique used for evaluation of catalytic activity of fuel cell catalysts. In particular, it is used to determine:

The electrochemical active surface area (ECSA)

The oxygen reduction reaction (ORR)

The hydrogen oxidation reaction (HOR)

Potentiostat (Autolab PGSTAT128N). Electrode rotating device (PINE AFMSRCE)

Experimental work

Ink preparation

Electrode polishing

Electrode surface after polishing

Ultrasonic homogenizer. (Mitsui Electric Seiki UX-300) Used for dispersion of catalytic inks.

Desktop Automatic Polishing Machine (Marteau Diamond Wrap Ace ML-162A). The bottom surface of the electrode is polished smoothly.

Film cast on GC electrode

detection

Electrode rotating device. (PINE AFMSRCE), used for rotational drying of the

catalyst layer by centrifugal force. Suppresses the coffee ring effect.

Examples of Evaluation Protocols and Analysis Techniques

Cyclic Voltammetry (CV)

Linear sweep voltammetry (LSV)

Mass activity

Electrode surface after film cast

Micro digital Scope (Micro Advance AS-M1100),

used to observe the cast film of the catalyst layer and its distribution.

-1.4

Confocal microscope (Laser tec OPTELICS HYBRID L3), a non-destructively method used to observe the shape and the thickness of the cross-section of the catalyst layer.

Results

400 -

LSV CV

Koutecky-Levich plot at 0.9V

Results	
H _{ads} Charge	208.22µC

200.22μυ 0.992cm²Pt **Pt Surface Area Roughness Factor** 5.050 87.63m²Pt/gPt **Double Layer Capacitance** 264.679µF **Double Layer Capacitance** 1348.00µF/cm² 266.94µF/cm²Pt **Double Layer Capacitance** Charge of H_{ads} & HER Regime 288.88µC Charge of H_{des} & HOR Regime 247.00µC Charge of Pt Oxidation Regime 143.04µC Charge of Pt Reduction Regime 167.37µC

Future plans: Academia collaboration for testing new materials for commercialization targets Materials characterization for new applications

Acknowledgment: This poster is partially based on results obtained from a project commissioned by the New Energy and Industrial Technology **Development Organization (NEDO).**

ECSA