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Y. Yoshimoto, T. Hori, I. Kinefuchi, and S. Takagi, Phys. Rev. E 96, 043112 (2017).
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D¢, the effective diffusion coefficient in the Knudsen regime
can be evaluated using mean-square displacement (MSD):
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Pt utilization based on LDFT simulation (Wet) ®  Inactive Platinum
. Active Platinum
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Comparison with Pt Catalyst Activation

Carbon Monoxide

-4--COSV Experiment

—a— Counted Activated Pt

1.0
Stripping Voltammetry (COSV)
ECSA by electrooxidation of adsorbed |
CO monolayer on the catalyst surface. 08 T
H,0+* <= OH,,, + H" + ¢~ (1) — P
206 |t
CO,y +OH,, —— CO, +H" + e~ +2" (2 S ¢
:'g L
C0,4s + OH, 45 =
d d S04
o
0.2
0.0 i
0 20

[T. lwasita, E.G. Ciapina, Handb. Fuel Cells — Fundam. Technol. Appl. (2009)]

40 60 80 100
RH [%]



x &

EMBO=RTBET—2HWVWT, HY— FEERADKOHEZELL,
BRILE, 70 EEZFHET S Iab—arV—ILeEE

R AEEBARFROMA (Fnm) , XA E+nm~%um)
FiE  BTEENBREE HE), JUMLE (FEXENT), BERLE (BriEmh )

RERFEROEAE, MHERETIEIrDRR

C. Otic et al., ACS Appl. Mater. Interfaces16, 20375 (2024). p
T. Kaneko et al., Int. J. Heat Mass Transf. 200, 123491 (2022). e e
S. Shimotori et al., Phys. Rev. E 104, 045105 (2021).
T. Kaneko et al., Int. J. Heat Mass Transf. 150, 119277 (2020).
M. Nakauchi et al., J. Phys. Chem. C 123, 7125 (2019).

T Hori et al,, Phys. Rev. E 97, 013101 (2018). e
Y. Yoshimoto et al., Phys. Rev. E 96, 043112 (2017). e K ]
A. Fukushima, J. Phys. Chem. C 119, 28396 (2015). Contribute to the development and 4§ | s e

optimization of an efficient PEMFC

PPPPPP

\\\\\\\\



	スライド 0: 触媒層内液水飽和モデルの開発
	スライド 1: 固体高分子形燃料電池内の物質輸送解析
	スライド 2: カソード触媒層
	スライド 3: 触媒層三次元構造モデルの作成
	スライド 4
	スライド 5: 格子密度汎関数法による相変化解析
	スライド 6: 計算例（アイオノマー膨潤無し）
	スライド 7: 触媒層構造およびアイオノマー膨潤モデル
	スライド 8: 多孔体内の気体拡散解析
	スライド 9: 小文字イプシロン 下付き eff スラッシュ タウ  （空隙率／屈曲度）の相対湿度依存性
	スライド 10: 固体高分子形燃料電池内の物質輸送解析（再掲）
	スライド 11: 多孔性触媒担体内部の白金利用率の変化
	スライド 12: 多孔性触媒担体の吸着等温線の再現
	スライド 13: 多孔性触媒担体内の液水分布
	スライド 14: 白金利用率
	スライド 15: まとめ

