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2/15発電性能を予測するマルチスケールシミュレーターの開発 九大 井上

不均一構造内反応輸送シミュレーション
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シミュレーションを活用し、新規材料の特徴から発電性能を予測。



3/15本シミュレーターの狙い

⚫ 新規材料の構造、特性の数値情報から、発電特性を予測

⚫ 新規材料の性能を最大限発揮する条件を高速に探索

⚫ 各種条件の感度評価から、新規材料の開発指針立案

⚫ 少量サンプルでMEA化困難でも、システム検討へ展開
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メゾスケール計算による、材料からシステム開発への”橋渡し”



4/153D触媒層計算の流れ

(1) 触媒担体構造作製

各担体構造を複数作製
（現在１材料で１００個作製）

中空担体
新規担体

(2) 担体充填

空隙率やPt loadingを設定値
として担体を充填

プロセス依存
凝集、偏在など (3) Pt粒子担持

Pt loading、Pt粒子径を
もとに配置(担体内外)

細孔内外のPt分離
担持密度など

(6) 構造特性推算と反応輸送解析へ

構造情報
• 細孔径分布
• アイオノマ―被覆率、厚さ
輸送特性情報
• 相対拡散係数
• 相対プロトン伝導度
ＯＲＲ反応性能
• 出力特性
• 反応分布 （Pt利用率）

物性反映

(4) アイオノマー被覆

均一被覆

(Type 1)

不均一被覆

(Type 2)

担体表面性状
との相互作用

(5) 触媒層構造作製

I/C比を設定パラメータとして
担体、空隙、アイオノマーの

三相構造を作製



5/15担体の構造設計
Q:触媒層全体の物質輸送性向上において、担体構造はどのように影響するのか？

O2 Ionomer

Pt
WaterO2

※これらの影響は、
MEAプロセス、I/C比、
操作条件で異なる。

a: 担体内酸素輸送、プロトン伝導： 細孔径、細孔深さ、Pt比率、親疎水性
 細孔内部状態 （酸素輸送は内部相状態により4～5桁拡散係数が異なる）

b: 触媒層厚さ方向の酸素輸送： 担体凝集体の形態、サイズ
 空隙率(相対的に触媒層厚さ)、屈曲度、細孔径（Knudsen抵抗）が変わる。
 比表面積が変わるとアイオノマー被覆状態、有効酸素拡散係数が変わる。

c: 触媒層厚さ方向のプロトン伝導：担体表面性状、親疎水性
 アイオノマー連結性、被覆厚さ、有効プロトン伝導度が変わる。

d: アイオノマー内酸素輸送：担体表面性状、細孔径、親疎水性
 アイオノマー厚さ分布、細孔内浸入状態

e: 担体間電子伝導： 粒子径、接触状態

担体形状は触媒層内の ナノ・メゾ・マクロの現象に影響を及ぼす



6/15担体評価

● G.Inoue et al., 

     J. Power Sources, 

     439, 227060 (2019)
⇒Vulcan

● K.Park et al., 

     J. Power Sources Adv., 

     15, 100096 (2022)

      ⇒Ketjen
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(b) (c)

(d) (e)

(a)

実担体と模擬担体の構造特性の比較
 (a) 一次粒子サイズ（入力値）、 (b)凝集粒子径、

 (c) 異方性、 (d) 比表面積（重量）、 (e) 細孔径

CB担体構造の構築
（上）TEM像（V-XC72）（下）モデル構造

実材料の計測情報をもとに、担体三次元構造を計算空間に再現。



7/15アイオノマー被覆モデル

アイオノマーの直接観察 (HAADF-STEM)
M. Lopez-Haro et al., Nature comm. 6229 (2014)

模擬V-XC72上の
アイオノマー被覆の再現
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アイオノマー厚さ 被覆率

I/C=0.2

Coverage

49.9%

CB: Vulcan XC72

CB: Vulcan

 XC72

Adhesion to small pore

(curling line)

I/C=0.5

Covergae

79.5%

窒素吸着による細孔径評価
T. Soboleva et al., Applied mat. & int. 2(2), 375 (2010)

担体三次元構造から、アイオノマー被覆状態を予測

● G.Inoue et al., 

     J. Power Sources, 

     439, 227060 (2019)
⇒Vulcan

● K.Park et al., 

     J. Power Sources Adv., 

     15, 100096 (2022)

      ⇒Ketjen



8/15酸素還元反応

酸素輸送式

水蒸気輸送式

プロトン輸送式

電子輸送式
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担体細孔内
酸素拡散

アイオノマ―
厚さの影響

担体内物質
輸送の影響

二次細孔形態、一次細孔構造、アイオノマー被覆形態を反映した計算

独自技術：マルチブロック法

空間粗視化し、
輸送係数の
局所で算出



9/15計算結果例、比較検証（FC-Cubic連携）

RH80のPt担持量,I/C違いのIV酸素分圧依存性

Sample1

I/C: 1.0

Pt担持量:
0.2 mgPtcm

-2

空隙率: 
0.34

CL厚さ:
 7.7 μm

Sample2

Sample3

I/C: 0.5

Pt担持量:
0.2 mgPtcm

-2

空隙率:
 0.57

CL厚さ:
9.6 μm

Sample4

I/C: 0.5

Pt担持量:
0.05 mgPtcm

-2

空隙率: 
0.56

CL厚さ:
2.2 μm

発電特性の妥当性評価、I/C比、Pt目付、担体種の影響反映

Int. J. Hydrogen Energy, 44, 32170 (2019).

J. Electrochem. Soc. 167 013544 (2020)

Int. J. Hydrogen Energy, 47(25) 2022, 12665

計算手法

I/C: 1.0

Pt担持量:
0.05 mgPtcm

-2

空隙率: 
0.34

CL厚さ:
1.9 μm
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計算結果例、比較検証（MIRAI比較）

第４回オープンシンポジウム評価解析プラットフォーム
新型MIRAI解析計画と進捗状況（2022/4/20）（FC-Cubic講演）

第１世代
MIRAI

Pt loading : 0.32 mg/cm2 0.16 mg/cm2  0.33 mg/cm2 

第２世代
MIRAI

比較材料

担体形状
空隙率
触媒層厚さ
Pt分布
 etc.

プロット：実測値
直線・破線：計算値 ⚫ 触媒仕込み条件

⚫ 担体構造

⚫ 凝集形状

⚫ Pt粒子径分布
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これらを反映した
反応輸送計算

実材料・実セル計測情報を基に検証（第１,第2世代MIRAI, 比較材料）



11/15多孔性担体のモデル化

溶解O2

細孔内拡散
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担体内部細孔の構造特性の感度解析、材料開発への展開



12/15新規材料を対象にした計算事例

セラミック担体の3次元構造再現

最適なI/S比を反応計算から見積もり

山梨大（柿沼先生）開発触媒の計算

X線散乱

NEDO Proj.開発触媒の計算

①MAの実測値より
速度パラメータ算出

②担体特性に合わせた
最適構造条件検討

③触媒層以外の周辺
材料設計も検討

条件A
条件B
条件C
比較

高多孔性担体対象の計算とメカニズム解明

開発材料をMEA化した時の出力性能と支配要因を推定し、材料研究に情報展開

粉砕

未粉砕

●小凝集体、酸素拡散が支配的
⇒空隙率低下、Knudsen拡散抵抗大

●大凝集体、プロトン伝導が支配的
⇒触媒層厚大、凝集体内輸送抵抗

模擬
構造

最適凝集径



13/15劣化計算（担体構造・Pt粒子径変化）

BOL
厚さ減少
(α=0.4)

空隙増加
(α=0.20)

空隙率厚さ

α: カーボン腐食体積減少率

担体劣化による触媒層構造の動的変化、Pt粒子の粗大化を再現。EOL性能予測へ

個別要素法
DEMを用いた
CB腐食による
動的構造解析

担体腐食率と
厚さ、空隙率変化
の関係を把握

Pt粒子間
ネットワーク
モデルによる
粒径変化解析

電位サイクルと
粒子径分布、
ECSA変化
の関係を把握

ECSA

Pt粒径
分布

Pt担持量：0.05 mg/cm²
下限：0.6 V, 上限：0.95 V,

方形波, 電位保持時間：3 s

0 cycle 100000 cycle
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Ketjen-black  I/C：0.85

NPA/Water 2/8           NPA/Water 4/6

インク凝集計算

溶媒組成⇒吸着⇒斥力効果 

𝐹poly = 𝑐1𝑘IC
𝑟𝑝𝑟𝑛

𝐿p,𝑛
2 𝑒Δ𝛿HSP/𝑐2

ハンセン溶解度パラメータと
アイオノマー被覆率の関係を反映

計算

実測

凝集粒子径
の時間変化

個別要素法（DEM）を用いた計算

湿式プロセスにおける分散溶媒中の粒子凝集の再現。溶媒条件の検討



15/15発電性能を予測するマルチスケールシミュレーターの開発

⚫ 新規材料の構造、特性の数値情報から、発電特性を予測

⚫ 新規材料の性能を最大限発揮する条件を高速に探索

⚫ 各種条件の感度評価から、新規材料の開発指針立案

⚫ 少量サンプルでMEA化困難でも、システム検討へ展開

不均一構造内反応輸送シミュレーション

0.00

0.20

0.40

0.60

0.80

1.00

0.0 0.5 1.0 1.5 2.0

V
o

lt
ag

e 
[V

]

Current density [A/cm2]

ionomer 10vol. %
ionomer 20vol. %
ionomer 30vol. %

・面内反応分布 ・液水ネットワーク解析

・セル出力特性
・Pt点反応分布
（利用率）

・過電圧分離計算例

• 凝集サイズ
• 粒子サイズ
• 表面積
• ぬれ性
• モルフォロジー
• 導電性

担体の
モデル構造化

アイオノマー、Pt分布

• 被覆厚
• ぬれ性
• Pt分散

アイオノマ被覆薄 厚

Ｐｔ高分散 Ｐｔ低分散

構造モデル・構造特性・実構造・プロセス

43% 17% 18% 13% 5%

拡散
(Ionomer)

拡散
(溶解)

拡散
(二次孔)

膜
抵抗

CL内
Ｈ+
抵抗

CL内
電子
抵抗

Pt
酸化反応

プロセス特性

実構造評価

• 断面抽出
• 部材識別 • 三次元化

• 凝集
• 分散
• 塗布
• 乾燥

新
規
開
発
材
料
の
発
電
性
能

新
規
開
発
材
料
の
特
徴

メゾスケール計算による、材料からシステム開発への”橋渡し”
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